Higher canonical asymptotics of Kähler–Einstein metrics on quasi-projective manifolds

نویسنده

  • Damin Wu
چکیده

We derive a canonical asymptotic expansion up to infinite order of the Kähler–Einstein metric on a quasi-projective manifold, which can be compactified by adding a divisor with simple normal crossings. Characterized by the log filtration of the Cheng–Yau Hölder ring, the asymptotics are obtained by constructing an initial Kähler metric, deriving certain iteration formula and applying the isomorphism theorems of the Monge–Ampère operators. This work is parallel to the asymptotics of Fefferman, Lee and Melrose on pseudoconvex domains in C.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Warped product and quasi-Einstein metrics

Warped products provide a rich class of physically significant geometric objects. Warped product construction is an important method to produce a new metric with a base manifold and a fibre. We construct compact base manifolds with a positive scalar curvature which do not admit any non-trivial quasi-Einstein warped product, and non compact complete base manifolds which do not admit any non-triv...

متن کامل

Degeneration of Kähler-Einstein hypersurfaces in complex torus to generalized pair of pants decomposition

According to the conjecture of Calabi, on a complex manifold X with ample canonical bundle KX , there should exist a Kähler-Einstein metric g. Namely, a metric satisfying Ricg = −ωg, where ωg is the Kähler form of the Kähler metric g. The existence of such metric when X is compact was proved by Aubin and Yau ([23]) using complex Monge-Ampère equation. This important result has many applications...

متن کامل

Resolutions of non-regular Ricci-flat Kähler cones

We present explicit constructions of complete Ricci-flat Kähler metrics that are asymptotic to cones over non-regular Sasaki-Einstein manifolds. The metrics are constructed from a complete Kähler-Einstein manifold (V, gV ) of positive Ricci curvature and admit a Hamiltonian two-form of order two. We obtain Ricci-flat Kähler metrics on the total spaces of (i) holomorphic C/Zp orbifold fibrations...

متن کامل

Dynamical construction of Kähler-Einstein metrics

In this paper, I give a new construction of a Kähler-Einstein metrics on a smooth projective variety with ample canonical bundle. This result can be generalized to the construction of a singular Kähler-Einstein metric on a smooth projective variety of general type which gives an AZD of the canonical bundle. MSC: 53C25(32G07 53C55 58E11)

متن کامل

The Kähler-ricci Flowon Kähler Surfaces

The problem of finding Kähler-Einstein metrics on a compact Kähler manifold has been the subject of intense study over the last few decades. In his solution to Calabi’s conjecture, Yau [Ya1] proved the existence of a Kähler-Einstein metric on compact Kähler manifolds with vanishing or negative first Chern class. An alternative proof of Yau’s theorem is given by Cao [Ca] using the Kähler-Ricci f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006